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Abstract 

This paper is concerned with the problem of obtaining the 

minimum realization of a linear nonanticipative system charac- 

terized by its impulse response matrix: the problem is to find a 

linear differential system of least order which is zero-state equiv- 

alent to the given one. 

1 

F o r  the time-varying case, Kalman's decomposition is used 

to obtain, in some cases, systems of lower order than Youla's 

globally reduced systems. In special cases, integrators a r e  

time-chared and integrators are saved at  the cost of relays; from 

a mathematical point of view, in such cases, the system's matri-  

ces  will include 6 functions. 
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I N  TR OD U C TI ON 

This paper is concerned with the problem of obtaining the minimum 

realization of a linear time-varying nonanticipative system characterized 

by its impulse response matrix: the problem is to find the linear differ- 

ential system of least order which is zero-state equivalent to the given 

one. 

sponse matrix. 

lower order than Youla's globally reduced system. 

The key tool i s  the Kalmanl' decomposition of the impulse re- 

Our procedure results, in  some cases, in  a system of 

3 

A. Notations 

Let W (t,  T )  be an r x p inpulse response matrix of a nonanticipative - 
system. It is assumed that, for each fixed T ,  W is locally square inte- . 

grable with respect to t and, for each fixed t, W - is locally square inte- 

grable with respect to T . 

- 

W(t, - T) is said to be realizable 2J i f  there exists a linear differential 

system S of finite dimensional state space (say n )  which has a zero-state 

response to any input u( . ) applied from to and given by - 

( i  j - z > t > '  - ' 0  

More precisely, let the system S be characterized by 

- 5(t) = ,F(t) x(t) t - G(t) - u(t), 
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where - F( s),  - G( a ) ,  and - H (  - ) are ,  respectively, n x  n, n x  p and 

r x n matrices whose elements a r e  real-valued functions defined on 

(-cc, 00). 

well-known that W(t, - I - )  i s  realizable by S i f  and only if  

Let 2 (t, to) be the state transition matrix of (2) .  Then it i s  
I 

W(t, T )  = H(t) @(t, T )  G(T ) for  all t - > T . - - - c ( 4) . .  

Since the system S is characterized by - -  F; G, and - H, one uses the 

locution "(F, G, H )  and realizes W(t,T)." - - - -  
Under the condition that F, G, and - H a r e  locally square integrable, - -  

2 
Kalman has given an interesting characterization of realizability: 

W(t,  - T )  is realizable if and only i f  

. .  

where 2 ( 9  ) and p( ) are, respectively, r x n and n x p matrices 

which a re  locally square integrable, We note that thie characterization 

is not valid if F( ) i s  not locally square integrable, 

on the observation that (0, p , 2 )  realizes W(t ,T ): thus, under these 

The proof is based - 
- -  c 

conditions, i t  is always possible to simulate any such impulse response 

ma trix using time variable gains and n integrators. 

Under the condition that F( . ) is locally square integrable and that - 
3 (5) holds for all t and T,  Youla has given an algorithm which, starting 

from any given factorization of W(t,  T )  as &(t) P ( T ) ,  arr ives  a t  a factor- 

ization of W of least order. 

- 
- 

Such a factorization is called a globally - 
reduced realization by Youla. In a nonanticipative system, however, we 

would require that (5) hold only over the se t  t > T . 
procedure which obtains a realization of 'minimum order  for this situation. 

Let us call this problem A. 

We shall give a - 



If, furthermore, we drop the requirement that - F( ) be locally 

square integrable, it  turns out that we can reduce even further the order 

of S. W e  shall call this problem B. 

Before we proceed to the reduction algorithms, i t  may be worth- 

while to give an example illustrating the various llminimalll realizations. 

Example: Let r = p = 1 and W(t, I) = Jl,(t) P l ( r )  t +2(t) P+I) t +3(t) P3(r) ,  I 
I 

where 

1 if te [ 3,43 1 if  t E  [ 5 , 6 ]  c 0 elsewhere, 0 elsewhere, 

if t s  [ -2, -1'3 
9 p )  = 

0 elsewhere, 
+,(t) = 

1 i f  t E [?; 81 

0 elsewhere 

, 
, 

1 if T E  [I, 21 

0 elsewhere 

1 if T E  [ -3, -43 

0 elsewhere, 
8 & 7 )  = 

we first note that the functions +.( ) 

over the interval ( -  00, a). 

i =  1, 2, 3 a re  linearly independent 

i=  1, 2, 3 a r e  

1 

Similarly, the functions pi( ) 

linearly independent over (-00, oa). 

realization of Youla has dimension 3. For  the nonanticipative situation 

howeve r, 

Hence the globally reduced 

3 

I since +,(t) P 3 ( t )  = 0 for all t > T . 
dimension 2. Now consider the first order differential system, 

Thus we have a realization of - 

i = -w q + [ U-t)  P p )  + 1 (t) P,(t)] u(t), 



.. 

where 6(t)  is the delta "function," and 1(t) is the Heaviside unit step 

function. It can be verified that this system is zero-state equivalent 

to the one characterized by W(t,T). Note that the matrix F(t)  which is 

here - S ( t ) ,  is not locally square integrable. 

B. Reduction Algorithm for Problem A 

We star t  with a given factorization of W(t, T )  as *(t) P ( T ) ,  a product - 
of an r x n and an n x p matrix. 

Definition 1. (a) F o r  each t E R, define n x n matrices 

and 

( 7 )  

(b) Let@ (t) denote the range space of B(t) and let z ( t )  denote - 
the null space of C(t). - 

Since the integration in  (6) and (7) is taken over an infinite interval, 

the matrices B(t) and C(t) may not be defined. 

interested in the subspaces@,(t) and (t) so that in (6), the lower limit 

-co can be replaced by any sufficiently small  number t C t such that the 

number of linearly independent rows of B( ) over any interval (t', t )  

with tb < t is not greater than the number of linearly independent rows 

of &( ) over the in t e rwl  (to, t )  . Similarly, the upper limit in (7) can 

However, w e  a r e  only - - 

0 

0 - - 



, -  

I 
1 *' 
I .  be replaced by any sufficiently large number tl > t so that the number of 

linearly independent columns of + ( ) over any interval (t, t ' )  with 

ti > t i s not greater than the number of linearly independent columns 

of +( ) over the interval ( t , t  ). 

1 I 

I 

1 - 
The physical interpretation of the subspaces &t) and cbz (t) is given 

I by the next definition and lemma. 

Definition 2 Let t E R be fixed. 

(a) A vector x r €I? is said to be reachable a t  time t if there is a - 
I 

I 
square integrable function u( ) such that - 

A vector x Q $ is said to be invisible after time t if - 

& ( T )  E.= 0 for  almost all T > t. - 
(b) Let U( t )  denote the se t  of vectors reachable at time t and let 

V(t) denote the set of vectors invisible after time' t. 

Lemma 1: (a) U ( t )  = a c t )  for each t. Also tl C t implies that - 2  

(b) V(t) = (t) for  each t. Also tl t2 implies that - 

The proof is very similar to the one given by Kalman and Weiss' and 

is therefore omitted. 

considered as a function of time changes only at finitely many instances. 

A similar argument is valid for f4 t ;  ( ). Let 5 < t2 < t to be the 

values of time at which either @, ( ) or  i)i5, ( ) changes. 

m 

Then, 



where t is any number with t > tm. m t l  m+l 
We will  now decompose (% (ti ) as follows: 

Let 

,and for i > 0, 

(9 )  

where X(tl) is any arbitrary subspace satisfying ( 8 ) ,  and ( t  

any subspace of a ( t  

(9) for s o m e z  (t 

9 i+l) '5 

) of largest possible.dimension which satisfies 

). For symmetry, let  us define q(tl) =@,(S)n 
i+l 

i + L  a (5). NOW let, 

and 

Then we 'observe that 



and 

Remarks: In the above decomposition the subspaces % ( t i )  and 7Jd 
are  not uniquely defined. 

unique. Therefore, if we let 

defined number. 

( t i )  

However, the dimension of each subspace is 

be the dimension of %, n is a well- 

For  an illustration of this decomposition see Fig. 1. 

- 

Definition: Let P be the matrix representing the projection of 2 - onto 
1 x a l o n g y @  6% (tmtl) . i.e., if - z c F? and - - -  z = x t y with - x E % - 

and 1 cv @‘(txntl)l, we must have 

We again note that although P depends upon the particular decomposition 

chosen, the dimension of the range of P is the well-defined number Ti. 

The relationships between this decomposition and the factorization of 

W( * ,  ) is given by the next lemma. 

- 
- 

, 

Lemma 2 (a) Let 1 

number. 

grable function u( ) with 

i < m t l  be fixed and let ti‘l < t < t. be a fixed 
1 - -  - 

The set  of all vectors x E $ such that there is a square inte- 

- 

contains the a e t % ( t i ) .  (Here to = -a) A l s o , & ( t ) n x  (t ) = ( 0 )  - 
it1 

for t < ti. 

- 8 -  



.. 
(b) Let x , x B ( t i ) ,  and let ti - < t C ti be a fixed -1 -2 

number. 

implies that x = x -1 -2' 

(c )  Finally, for almost all (t,  T )  with t > T we have - 

Proof: (a) Let x € % ( t i )  g&, ( t . )  =a(t). Therefore there 

is a function u( ) such that 

1 - 
- 

Obviously E so that by the decomposition (9) zl = 0 .  

(b) By assumption + ( T ) ( ~ ~ - E ~ )  = 0 for  almost all T > t, so that 

(t. ) has 

- 
- x ) E ( t .  ). By the decomposition ( 9 ) ,  s i n c e q  (ti) 

(251 -2 1 1 

maximum dimension we must have 

- Q -  



.. 
. This implies that zl-zz = 0 .  - 

( c )  It suffices to prove that f o r  all square integrable functions 

u (  ),. we have - 

t 
Let z(t) = $, e(T) z(T) dt. Clear l i  x(t) 6 a(t) = act.) for  some i .  

By the decomposition (9) we have 

1 - - 

z = x +  y ,  - - -  
where 

and 

- x E%(tl)  + - e +Z(ti), 

y Q q ( t l )  t ty (t i) .  

By the definition of P, - 

P z =  P ( I f + y )  = P x  = ' x .  -- - - 

We have to show then that $(t) y =  0. But this is true because 

Q. E. D. 
2 

Since P = P, by lemma 2 we have, 

where 



. Since the range of P has dimension x, there a re  a t  most 

rows  in the matrix El( - ) and at most n independent columns of 9 ( ). 

We star t  with the factorization of W(t, T )  as  + ( t )  &(T)  and car ry  out 

the Youla reduction technique. 

obtained by this method be 

independent 

1 

- 

- -1 

Let the globally- reduced realization 

for t > T , - 
A A A A 

where 4 and p have dimension p x n and n x r ,  respectively. 

Clearly - < ii . 
- 

A -  Theorem 1: (a) n = n . 

factorization of W as a product of p x n" and 

Then > E .  

x r matrices respectively. 

- 
Proof: It suffices to prove (b). 

times in the definitions (8) and (9). 

+, f3 define the subspaces &( t i )  % (ti), 

Let tl < t2 tm be the switching 

Corresponding to  the factorization 
rJ rv ry W r J  x (ti) etc., Note that 

n these a r e  subspaces of R . Let 

n# Y .v x = x (t l)  t t ZG (t,). 

. h l  
n 

Then XGR"". To show that f; > n, we shall in fact show that - 

1 - 

* A  ni = dimension dimension. 

which it follows that 

number. imply that the impulse response 

$(t) B(T) gives exactly ni linearly independent outputs over the interval 

Let ti < t < t. bea f ixed  

Then (a) and (b) of lemma 2 



. 

. (t ,  00). Similarly, 

linearly independ 

r - m  N 

the impulse response &(t)  P ( T )  gives zxactly n. 

nt outputs over the interval ( t ,  cb). 

- 1 

Since these two 
N 

impulse responses a re  the same we must have n. = n . .  1 1 

Q.E.D. 

C.  Reduction Algorithm for Problem B 

As before, we s tar t  with a given factorization of W(t,T) - as 

$(t) I (T) ,  a product of an r x n matrix and an n x p matrix. 

the subspaces CdL (t) and %(t) a s  i n  problem A. 

We define 

Again let  

- < t 
t2  m be the instants a t  which either c6L ( * ) o r  % (.e ) 

changes. 

To keep the notation from getting prohibitively complicated we 

shall illustrate the reduction algorithm for the case when m = 1. The 

extension for m > 1 must be clear. Thus, suppose m = 1, SO that 

(t) = @,itl) [%(t) = %(tl)] for t < tl and@, (t) = @. (t2) 

(t) =a (t,)] for t > tl, where t2 > t is any number. Let [ 1 

(t i)  = (t .)‘  1 f) 1(7; ( t . )  1 t X(t.) 1 i=  1, 2, 

w h e r e x  (t l)  and x(t2) a r e  chosen in  such a manner that they have an 

1 f i L C r B G L b A U A L  L -  -----&:-e VI -4 *-&&-..- 13-neet r--&--- nnclsihle dimension. This is achieved as follows. 

(i) ’ Choose an arbitrary basis B1 for (tl) fl G(tl). 

(ii) Complete the basis to B1 u B21 for @ (t$n %(t2).  

(iii) Complete the basis to B1 u BZ1 U Q, for @ (5 ) .  Then 
M 

B21 u Q, is the basis for &? (9. 

19 

’ ,  



. 
L 

i . '  

(iv) From (ii) complete the basis to BIU B21 u B21 for 

(v) Complete the basis to BZ1 n B1 f l  B21 fl Q1 u Q, for  &. (t2). Then 
QIU Q Z  wi l l  be the basis for x(t2). 

I 1 
(vi) Let N be a basis f o r a  (t2) . 

The decomposition of Rn is illustrated in Fig. 2. 

Next we construct a nonsingular n x n matrix M and its inverse 

M - ~  as follows: 

M =  

. 

B21 

p1 

Q1 

p2 

B1 

p4 

BI1 I 
I 

I 

I 

Thus the f i rs t  p1 columns of M a r e  the vectors o.f BZ1, the next p2 

columns of M a r e  the vectors of Q,, and so on. 

------I -= 18-l -*&:*l. 

Similarly, the first p1 

r 
rlennted by B,, a r e  the reciprocal basis vectors 

Ll 
r u w a  V I  A I L  V V A A r r r r  ----- 

of B21 and so on. The last p6 rows of M-' a r e  the vectors of N. Now 

- 13 - 



'3 p4 '5 p6 

where for example b ( t )  = +(t)  B1 and p6 ( T )  = N e (7 ) .  Since BIG - 
( t l )  we must have according to lemma la b(t) = 0 for almost all t . - 

Again, a s  B1 u B21 u B Z I C  %(tz) we wil l  have 4 (t) = 0, t / ~  (t)  = 0 -1 -4 - 
rad j-J5(t) =2 for t > tl . Now B1 u BZ1 u Q1 is a basic for&t l )  so 

that e3( T) = 0, &( T )  = 2, and &( T )  =2. for T < tl . 
e6( T )  = ,O for T > tl . 

Similarly, - 
Taking these facts into account we see that 

where furthermore &( T )  = 0 -for t < tl and tJ1(t) = 0 for t > tl . 
If p1 > pL3 we can add p1 - p 

identically zero columns to $3 to make p1 = p3.  

p3 > p1 we can add p3 - p 

el and 4 ,  respectively. 

be a vector of dimension p1 = p3 and q 

pL2 and consider the first order differential system of dimension 

identically zero rows to e3 and pl- pg 3 

Similarly, if 

identically zem rows and columns to 1 
Thus we can assume that pl = p3. Let q 

-1 
be a vector of dimension 2 

~- . .. CL1+PZ' 
.. . 

- 14- 
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and - Y ( t )  = [ tl(t) i- g t ) L  ( t - t l ) l  - ?,(t) i- 92(t) 32(t), where - 6 (t) is a 

p x p diagonal matrix with 6 ( t )  a s  the diagonal elements and l( t)  is 1 1  - 
a p1 x p1 matrix with the Heaviside unit function l(t) on the diagonal. 

It should be clear that the zero-state response of this system is the 
t 

same as that given by the impulse response matrix W ( t , r ) .  A n  analog - 
computer setup for this system is given in  Fig. 3. 
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